V1 API
Table of Contents
fastdup.engine
Fastdup Objects
class Fastdup(FastdupController)
This class provides all fastdup capabilities as a single class.
Usage example
=============
import fastdup
annotation_csv = '/path/to/annotation.csv'
data_dir = '/path/to/images/'
output_dir = '/path/to/fastdup_analysis'
fd = fastdup.create(work_dir=output_dir, input_dir=data_dir)
fd.run(annotations=pd.read_csv(annotation_csv))
df_sim = fdp.similarity()
im1_id, im2_id, sim = df_sim.iloc[0]
annot_im1, annot_im2 = fdp[im1_id], fdp[im2_id]
df_cc, cc_info = fd.connected_components()
image_list, embeddings = fd.embeddings()
run
def run(input_dir: Union[str, Path, list] = None,
annotations: pd.DataFrame = None,
embeddings=None,
subset: list = None,
data_type: str = 'infer',
overwrite: bool = True,
model_path=None,
distance='cosine',
nearest_neighbors_k: int = 2,
threshold: float = 0.9,
outlier_percentile: float = 0.05,
num_threads: int = None,
num_images: int = None,
verbose: bool = False,
license: str = None,
high_accuracy: bool = False,
cc_threshold: float = 0.96,
sync_s3_to_local: bool = False,
run_stats: bool = True,
run_advanced_stats: bool = False,
nnf_mode: str = "HNSW32",
find_regex: str = "",
bounding_box: str = None,
augmentation_additive_margin: int = 0,
augmentation_vert: float = 0,
augmentation_horiz: float = 0,
**kwargs)
Arguments:
input_dir
: Location of the images/videos to analyze
- A folder
- A remote folder (s3 or minio starting with s3:// or minio://). When using minio append the minio server name for example minio://google/visual_db/sku110k
- A file containing absolute filenames each on its own row
- A file containing s3 full paths or minio paths each on its own row
- A python list with absolute filenames
- A python list with absolute folders, all images and videos on those folders are added recursively
- yolo-v5 yaml input file containing train and test folders (single folder supported for now)
- We support jpg, jpeg, tiff, tif, giff, heif, heic, bmp, png, webp, mp4, avi. In addition we support tar, tar.gz, tgz and zip files containing images. Support also 16 bit RGBA, RGB and grayscale images.
If you have other image extensions that are readable by opencv imread() you can give them in a file (each image on its own row) and then we do not check for the known extensions and use opencv to read those formats
Note: It is not possible to mix compressed (videos or tars/zips) and regular images.
Use the flag tar_only=True if you want to ignore images and run from compressed files
Note2: We assume image sizes should be larger or equal to 10x10 pixels.
Smaller images (either on width or on height) will be ignored with a warning shown
Note3: It is possible to skip small images also by defining minimum allowed file size using
min_file_size=1000 (in bytes)
Note4: For performance reasons it is always preferred to copy s3 images from s3 to local disk and then run fastdup on local disk. Since copying images from s3 in a loop is very slow, Alternatively you can use the flag sync_s3_to_local=True
to copy ahead all images on the remote s3 bucket to disk
Note5: fastdup can read images from other format extensions as well, as long they are supported in opencv.imread(). If the files are not ending with a common image prefix, you can prepare a csv file with full image path, one per row, no commas please!
annotations
: Optional dataframe with annotations. Images are given in the columnfilename
. Optional class labels are given in the columnlabel
.- Optional bounding box structure contains the fields
col_x
,row_y
,width
,height
. - Optional rotated bounding box contains the fields
x1
,y1
,x2
,y2
,x3
,y3
,x4
,y4
- Alternatively,
annotations
can point to ajson
file containingCOCO
annotations. - Alternatively,
annotationss
can be a dictionary containingCOCO
annotations.
- Optional bounding box structure contains the fields
subset
: List of images to run on. If None, run on all the images/bboxes.data_type
: Type of data to run on. Supported types: 'image', 'bbox'. Default is 'infer'.model_path
: path for an alternative onnx/ort model for feature vector extraction. supported formats are all onnx, ort files. (Need to make sure model output has a single channel, please reach out to us for adding support for additional models).
Make sure to updated
parameter (feature vector width) accordingly when changing the model file. Reserved values (models that are automatically downloaded) are:- None - default fastdup model
dinov2s
: Meta's dinov2 model smalldinov2b
: Meta's dinov2 model bigclip
: OpenAi'sViT-B/32
clip modelclip336
OpenAI'sViT-L-14@336px
clip modelresent50
resnet50-v1-12.onnx
model from GitHub onnx.efficientnet``efficientnet-lite4-11
model from GitHub onnx.- Note: need to check model provider license, we do not provide the model it is downloaded directly from the provider and usage should conform to the model license.
distance
: - distance metric for the Nearest Neighbors algorithm.
The default is 'cosine' which works well in most cases. For nn_provider='nnf' the following distance metrics
are supported. When using nnf_mode='Flat': 'cosine', 'euclidean', 'l1','linf','canberra',
'braycurtis','jensenshannon' are supported. Otherwise 'cosine' and 'euclidean' are supported.,num_images
: Number of images to run on. On default, run on all the images in the image_dir folder. When running from s3 bucket with large number of images, speeds up run as it can limit the number of images consumed.nearest_neighbors_k
: Number of similarities to compute per image or video frame.high_accuracy
: Compute a more accurate model. Runtime is increased about 15% and feature vector storage
size/ memory is increased about 60%. The upside is the model can distinguish better of minute details in
images with many objects.outlier_percentile
: Percentile of the outlier score to use as threshold. Default is 0.5 (50%).threshold
: Threshold to use for the graph generation. Default is 0.9.cc_threshold
: Threshold to use for the graph connected component. Default is 0.96.bounding_box
: Optional bounding box to crop images, given as
bounding_box='row_y=xx,col_x=xx,height=xx,width=xx'
. This defines a global bounding box to be used
for all images.bounding_box='face'
runs a face detection model and crops the face from the image (in case a face is present).bounding_box='ocr'
runsOCR
model on the image and crops any text images.bounding_box='yolov5s'
runsyolov5s
model on the image and crops and objects.- In both
'face' / 'ocr' / 'yolov5s'
modes, an output file namedatrain_crops.csv
is created in thework_dir
listing all crop dimensions and source images. - For the face crop the margin around the face is defined by
augmentation_horiz=0.2, augmentation_vert=0.2
where 0.2 mean 20% additional margin around the face relative to the width and height respectively. Lower value is 0 (no margin) and upper allowed value is 1. Default is 0.2. Another parameter isaugmentation_additive_margin
which ads X pixels around the object frames. The margin arguments can not be used together, it is either multiplicative or additive margin.
num_threads
: Number of threads. By default, autoconfigured by the number of cores.license
: Optional license key. If not provided, only free features are available.overwrite
: Optional flag to overwrite existing fastdup results.verbose
: Verbosity level. Set to True when debugging issues.kwargs
: Additional parameters for fastdup.d
: Model Output dimension. Default is 576.min_offset
: Optional min offset to start iterating on the full file list. When using a folder lists the folder and then starts from position min_offset in the list. This allows for parallel feature extraction.max_offset
: Optional max offset to start iterating on the full file list. When using a folder lists the folder and then starts from position min_offset in the list. This allows for parallel feature extraction.nnf_mode
: Selects the nnf model mode. default isHNSW32
.Flat
is exact and not an approximation.nnf_param
: Selects and assigns optional parameters.resume
: Optional flag to resume tar extraction from a previous run.run_cc
: Run connected components on the resulting similarity graph. Default is True.delete_tar :
Delete tar after download from s3/minio.delete_img
: Delete images after download from s3/minio.run_stats
: Computer image statistics (default is True)run_advanced_stats
: Compute enhanced image statistics like hue, saturation, contrast etc.sync_s3_to_local
: When using aws s3 bucket, sync s3 to local folder to improve performance (recommended). Assumes there is enough local disk space to contain the data. Default is False.find_regex
optional regex to control the images selected for run when running from a local folder.
fastdup.fastdup_controller
FastdupController Objects
class FastdupController()
__init__
def __init__(work_dir: Union[str, Path], input_dir: Union[str, Path] = None)
This class serves as a proxy for fastdup basic usage,
the class wraps fastdup-run call provides quick access to
fastdup files such as: similarity, csv outlier csv, etc...
Moreover, the class provides several extra features:
- Ability to run connected component analysis on splits without calling fastdup run again
- Ability to add annotation file and quickly merge it to any of fastdup inputs
Currently the class support running fastdup on images and object
Arguments:
work_dir
: target output dir or existing output dirinput_dir
: (Optional) path to data dir
num_instances
def num_instances(valid_only=True)
Get number of instances in the dataset
Arguments:
valid_only
: if True, return only valid annotations
annotations
def annotations(valid_only=True)
Get annotation as data frame
Arguments:
valid_only
: if True, return only valid annotations
Returns:
pandas dataframe
similarity
def similarity(data: bool = True,
split: str = None,
include_unannotated=False) -> pd.DataFrame
Get fastdup similarity file
Arguments:
data
: add annotationsplit
: filter by splitinclude_unannotated
: include instances that are not represented in the annotations
Returns:
requested dataframe
outliers
def outliers(data: bool = True,
split: str = None,
include_unannotated=False) -> pd.DataFrame
Get fastdup outlier file
Arguments:
data
: add annotationsplit
: filter by splitinclude_unannotated
: include instances that are not represented in the annotations
Returns:
requested dataframe of outliers, sorted by furthest away images first. Each row is one outlier image.
embeddings
def embeddings(d: int = 576) -> tuple: [list, pd.DataFrame]
Get fastdup embeddings.
Arguments:
d
: feature vector width (on default 576).
Returns:
A tuple containing the list of all image names, and np.ndarray
containing a matrix with the embedding, each row is on image and matrix width is d
.
feature_vector
def feature_vector(img_path: str, model_path: str = None, d: int = 576) -> tuple: [list, pd.DataFrame]
Compute feature vector for a single image.
Arguments:
img_path
(str): a path pointing to an image, could be local or s3 or a minio path, see run() documentationmodel_path
(str) : optional path pointing to onnx/ort model, see run() documentationd
(int) : feature vector width (on default 576).
Returns:
embeddings
: 1 x d numpy matrix contains feature embeddings (row vector)files
: the image filename used to generate the embedding (should be equal toimg_path
)
feature_vectors
def feature_vectors(img_path: str, model_path: str = None, d: int = 576) -> tuple: [list, pd.DataFrame]
Compute feature vectors for a group of images.
Arguments:
img_path
(str): a path pointing to a folder, could be local or s3 or a minio path, or a list of images, see run() documentationmodel_path
(str) : optional path pointing to onnx/ort model, see run() documentationd
(int) : feature vector width (on default 576).
Returns:
embeddings
: n x d numpy matrix contains feature embeddings (row vector)files
: the image filenames used to generate the embedding (this is important since in case of broken images no embedding are created, in adition the order of the images may change based on your file system.
init_search
def init_search(k, work_dir, d=576, model_path=model_path_full, verbose=False)
Initialize real time search and precomputed nnf data.
This function should be called only once before running searches. The search function is search().
Arguments:
k
(int): number of nearest neighbors to search fowork_dir
(str): working directory wherefastdup.run
was run.d
(int): (Optional) dimension of the feature vector. Defualt is 576.model_path
(str): (Optional): path to the onnx model file. .verbose
(bool): (Optional): True for verbose modelicense
(str): License key for using search.store_int
(int): 0 to return filename, 1 to return offsetturi_param
(str): optional additional directionthreshold
(float): optional threshold to find images similar >= threshold, default
Example:
>>> import fastdup
>>> input_dir = "/my/input/dir"
>>> work_dir = /my/work/dir"
>>> fastdup.run(input_dir, work_dir)
# point to the work_dir where fastdup was run
>>> fastdup.init_search(10, work_dir, verbose=True, license=<my license>)
# The below code can be executed multiple times, each time with a new searched image
>>> df = fastdup.search("myimage.jpg", None, verbose=True)
# optional: display search output
>>> fastdup.create_duplicates_gallery(df, ".",input_dir=input_dir)
Note: fastdup model was trained with Image resize via Resampling.NEAREST and the BGR channel swapped to RGB.
In case you use other models, need to check their requirements.
Returns:
ret
int - 0 in case of success, otherwise 1.
search
def search(filename, image, verbose=0)
Search for similar images in the image database.
Arguments:
filename
(str): full path pointing to an image.img
(PIL.Image): (Optional) loaded and resized PIL.Image, in case given it is not red from filenameverbose
(bool): (Optiona) run in verbose mode, default is False
Returns:
Returns:
ret
(pd.DataFrame):None
in case of error, otherwise apd.DataFrame
withfrom,to,distance
columns
vector_search
def vector_search(filename = "query_vector", vec=None, verbose=False)
Search for similar images in the image database, given a feature vector.
Arguments:
filename
: vector name (used for debugging)vec
(numpy): Mandatory numpy matrix of size1xd
or a vector of sized
verbose
(bool): (Optiona) run in verbose mode, default isFalse
Returns:
ret
(pd.DataFrame):None
in case of error, otherwise apd.DataFrame
withfrom,to,distance columns
invalid_instances
def invalid_instances()
Get fastdup invalid file
Returns:
requested dataframe
img_stats
def img_stats(data: bool = True,
split: bool = None,
include_unannotated=False) -> pd.DataFrame
Get fastdup stats file
Arguments:
data
: add annotationsplit
: filter by splitinclude_unannotated
: include instances that are not represented in the annotations
Returns:
requested dataframe
config
@property
def config() -> dict
Get fastdup config file
Returns:
config dict
connected_components
def connected_components(
data: bool = True,
split: str = None,
include_unannotated=False) -> Tuple[pd.DataFrame, pd.DataFrame]
Get fastdup connected components file
Arguments:
data
: add annotationsplit
: filter by splitinclude_unannotated
: include instances that are not represented in the annotations
Returns:
requested dataframe, each row contains an image and the column 'component_id' include the component (cluster) for that image. In addition returns statistic information dataframe about component sizes.
connected_components_grouped
def connected_components_grouped(
sort_by: str = "comp_size",
ascending: bool = True,
metric: str = None,
load_crops: bool = False) -> pd.DataFrame
Get image clusters. Each row contains a cluster (a group of similar images) and the columns contain information about images on that cluster, including image names, image ids, labels (if existing) and statistics about the cluster (optional).
Arguments:
sort_by
: column to sort_by, on default give the largest components firstascending
: sort_by ascending or descendingmetric
: optional stats metric for the component for example blur, min (color), max (color), mean (color)
Returns:
requested dataframe, each row contains a cluster and the column contains list of images on that cluster.
run
def run(input_dir: Union[str, Path] = None,
annotations: pd.DataFrame = None,
subset: list = None,
embeddings=None,
data_type: str = 'infer',
overwrite: bool = False,
print_summary: bool = True,
**fastdup_kwargs)
This function:
- Calculates a subset of images to analyze
- Runs fastdup
- Maps images/bounding boxes to fastdup index
- Expands annotation csv to include files that are not in annotation but is in subset
- Creates a version of annotation that is grouped by image
Arguments:
input_dir
: input directory containing imagesannotations
: (Optional) annotations file, the expected column convention is:- img_filename: input_dir-relative filenames
- img_h, img_w (Optional): image height and width
- col_x, row_y, width, height (Optional): bounding box arguments
- split (Optional): data split, e.g. train, test, etc ...
subset
: (Optional) subset of images to analyzeembeddings
: (Optional) pre-calculated embeddingsdata_type
: (Optional) data type, one of 'infer', 'image', 'bbox'overwrite
: (Optional) overwrite existing filesprint_summary
: Print summary report of fastdup run resultsfastdup_kwargs
: (Optional) fastdup run arguments, see fastdup.run() documentation
summary
def summary(verbose=True,
blur_threshold: float = 150.0,
brightness_threshold: float = 253.0,
darkness_threshold: float = 4.0) -> List[str]
This function provides a summary of the dataset statistics and issues uncovered
using fastdup. This includes total number of images, invalid images, duplicates, outliers,
blurry and dark/bright images. Count and percent for each.
Arguments:
verbose
:blur_threshold
:brightness_threshold
:darkness_threshold
:
img_grouped_annot
def img_grouped_annot(image_level_columns=None) -> pd.DataFrame
This function groups annotation according to fastdup-im-id and returns the grouped file.
Because this process takes significant time the process is done once and the result is cached
Returns:
grouped annotation dataframe
set_fastdup_kwargs
def set_fastdup_kwargs(input_kwargs: dict) -> dict
override default arguments in fastdup args with users-input
Arguments:
input_kwargs
: iunput kwargs to init function
Returns:
updated dict
fastdup_convert_to_relpath
def fastdup_convert_to_relpath(work_dir: Union[Path, str],
input_dir: Union[Path, str])
create mapping files, relative path to img-id/features/stats
Arguments:
work_dir
: location of filesinput_dir
: base dir for images
s3_folder_exists_and_not_empty
def s3_folder_exists_and_not_empty(s3_path: str) -> bool
Folder should exist.
Folder should not be empty.
fastdup.fastdup_galleries
FastdupVisualizer Objects
class FastdupVisualizer()
__init__
def __init__(controller: FastdupController, default_config=None)
Create galleries/plots from fastdup output.
Arguments:
controller
: FastdupController instancedefault_config
: dict of default config for cv2, e.g. {'cv2_imread_flag': cv2.IMREAD_COLOR}
outliers_gallery
def outliers_gallery(save_path: str = None,
label_col: str = FD.ANNOT_LABEL,
draw_bbox: bool = True,
num_images: int = 20,
max_width: int = None,
lazy_load: bool = False,
how: str = 'one',
slice: Union[str, list] = None,
sort_by: str = FD.OUT_SCORE,
ascending: bool = True,
save_artifacts: bool = False,
show: bool = True,
**kwargs)
Create gallery of outliers, i.e. images that are not similar to any other images in the dataset.
Arguments:
save_path
: html file-name to save the gallery or directory if lazy_load is True,
if None, save to fastdup work_dirnum_images
: number of images to displaylazy_load
: if True, load images on demand, otherwise load all images into htmllabel_col
: column name of label in annotation dataframehow
: (Optional) outlier selection method.- one = take the image that is far away from any one image
(but may have other images close to it). - all = take the image that is far away from all other images. Default is one.
slice
: (Optional) parameter to select a slice of the outliers file based on a specific label or a list of labels.max_width
: max width of the gallerydraw_bbox
: if True, draw bounding box on the imagesslice
: (Optional) list/single label for filtering outlierssort_by
: (Optional) column name to sort the outliers byascending
: (Optional) sort ascending or descendingsave_artifacts
: save artifacts to diskshow
: show gallery in notebookkwargs
: additional parameters to pass to create_outliers_gallery
duplicates_gallery
def duplicates_gallery(save_path: str = None,
label_col: str = FD.ANNOT_LABEL,
draw_bbox: bool = True,
num_images: int = 20,
max_width: int = None,
lazy_load: bool = False,
slice: Union[str, list] = None,
ascending: bool = False,
threshold: float = None,
save_artifacts: bool = False,
show: bool = True,
**kwargs)
Generate gallery of duplicate images, i.e. images that are similar to other images in the dataset.
Arguments:
save_path
: html file-name to save the gallery or directory if lazy_load is True,
if None, save to fastdup work_dirnum_images
: number of images to displaydescending
: display images with highest similarity firstlazy_load
: load images on demand, otherwise load all images into htmllabel_col
: column name of label in annotation dataframeslice
: (Optional) parameter to select a slice of the outliers file based on a specific label or a list of labels.max_width
: max width of the gallerydraw_bbox
: draw bounding box on the imagesslice
: (Optional) list/single label for filtering outliersascending
: (Optional) sort ascending or descendingthreshold
: (Optional) threshold to filter out images with similarity score below the threshold.save_artifacts
: save artifacts to diskshow
: show gallery in notebookkwargs
: additional parameters to pass to create_duplicates_gallery
similarity_gallery
def similarity_gallery(save_path: str = None,
label_col: str = FD.ANNOT_LABEL,
draw_bbox: bool = True,
num_images: int = 20,
max_width: int = None,
lazy_load: bool = False,
slice: Union[str, list] = None,
ascending: bool = False,
threshold: float = None,
show: bool = True,
**kwargs)
Generate gallery of similar images, i.e. images that are similar to other images in the dataset.
Arguments:
save_path
: html file-name to save the gallery or directory if lazy_load is True,
if None, save to fastdup work_dirnum_images
: number of images to displaydescending
: display images with highest similarity firstlazy_load
: load images on demand, otherwise load all images into htmllabel_col
: column name of label in annotation dataframeslice
: (Optional) parameter to select a slice of the outliers file based on a specific label or a list of labels.max_width
: max width of the gallerydraw_bbox
: draw bounding box on the imagesget_extra_col_func
: (callable): Optional parameter to allow adding additional column to the reportthreshold
: (Optional) threshold to filter out images with similarity score below the threshold.slice
: (Optional) list/single label for filtering similarity dataframeascending
: (Optional) sort ascending or descendingshow
: show gallery in notebookkwargs
: additional parameters to pass to create_duplicates_gallery
stats_gallery
def stats_gallery(save_path: str = None,
metric: str = 'dark',
slice: Union[str, list] = None,
label_col: str = FD.ANNOT_LABEL,
lazy_load: bool = False,
show: bool = True)
Generate gallery of images sorted by a specific metric.
Arguments:
save_path
: html file-name to save the gallery or directory if lazy_load is True,
if None, save to fastdup work_dirmetric
: metric to sort images by (dark, bright, blur)slice
: list/single label for filtering stats dataframelabel_col
: label column namelazy_load
: load images on demand, otherwise load all images into htmlshow
: show gallery in notebook
component_gallery
def component_gallery(save_path: str = None,
label_col: str = FD.ANNOT_LABEL,
draw_bbox: bool = True,
num_images: int = 20,
max_width: int = None,
lazy_load: bool = False,
slice: Union[str, list] = None,
group_by: str = 'visual',
min_items: int = None,
max_items: int = None,
threshold: float = None,
metric: str = None,
sort_by: str = 'comp_size',
sort_by_reduction: str = None,
ascending: bool = False,
save_artifacts: bool = False,
show: bool = True,
**kwargs)
Arguments:
save_path
: html file-name to save the gallerynum_images
: number of images to displaylazy_load
: load images on demand, otherwise load all images into htmllabel_col
: column name of label in annotation dataframegroup_by
: [visual|label]. Group the report using the visual properties of the image or using the labels of the images. Default is visual.slice
: (Optional) parameter to select a slice of the outliers file based on a specific label or a list of labels.max_width
: max width of the gallerymin_items
: threshold to filter out components with less than min_itemsmax_items
: max number of items to display for each componentdraw_bbox
: draw bounding box on the imagesget_extra_col_func
: (callable): Optional parameter to allow adding additional column to the reportthreshold
: (Optional) threshold to filter out images with similarity score below the threshold.metric
: (Optional) parameter to set the metric to use (like blur) for chose components. Default is None.slice
: (Optional) list/single label for filtering connected componentsort_by
: (Optional) 'area'|'comp_size'|ANY_COLUMN_IN_ANNOTATION
column name to sort the connected component bysort_by_reduction
: (Optional) 'mean'|'sum' reduction method to use for grouping connected componentsascending
: (Optional) sort ascending or descendingshow
: show gallery in notebooksave_artifacts
: save artifacts to disk
Data Enrichments
fastdup.caption
def caption(model_name = 'automatic',
device = 'cpu',
batch_size: int = 8,
subset: list = None,
vqa_prompt: str = None,
kwargs=None)
Generate captions or visual question answers on fastdup output.
Arguments:
model_name
: (Optional) select the model used for captioning or VQA (ViT-GPT2 by default)device
: (Optional) select the processor used to compute captions (CPU by default)batch_size
: (Optional) set the number of images to process in a single batch (8 by default)subset
: (Optional) specify a subset of images to captionvqa_prompt
: (Optional) provide a prompt for visual question answering- kwargs : additional parameters to pass to caption
Updated 6 months ago
The API used by all fastdup versions up to V1.0 is still fully supported, see here: